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ABSTRACT 
Computer programs that analyze light water reactor safety 

solve complex systems of governing, closure and special 
process equations to model the underlying physics. In addition, 
these programs incorporate many other features and are quite 
large. RELAP5-3D[1] has over 300,000 lines of coding for 
physics, input, output, data management, user-interaction, and 
post-processing. For software quality assurance, the code must 
be verified and validated before being released to users. 
Verification ensures that a program is built right by checking 
that it meets its design specifications. Recently, there has been 
an increased importance on the development of automated 
verification processes that compare coding against its 
documented algorithms and equations and compares its 
calculations against analytical solutions and the method of 
manufactured solutions[2]. For the first time, the ability exists 
to ensure that the data transfer operations associated with 
timestep advancement/repeating and writing/reading a solution 
to a file have no unintended consequences.  To ensure that the 
code performs as intended over its extensive list of 
applications, an automated and highly accurate verification 
method has been modified and applied to RELAP5-3D.  
Furthermore, mathematical analysis of the adequacy of the 
checks used in the comparisons is provided. 

 
INTRODUCTION 

The state-of-the-art nuclear reactor system safety analysis 
computer program developed at the Idaho National Laboratory 
(INL), RELAP5-3D, continues to adapt to changes in computer 
hardware and software and to develop to meet the ever-
expanding needs of the nuclear industry. To continue at the 
forefront, code testing (Verification and Validation) must evolve 
with both code and industry developments.  

A form of validation testing, Developmental Assessment[3] 
(DA), is applied to validate RELAP5-3D performance for 
generic nuclear safety analyses. DA checks RELAP5-3D 
calculations against analytical solutions, separate-effects and 
integral tests, and whole plant data. First performed in 1990, 

each new RELAP5-3D code release is reevaluated with DA. 
Verification checks coding against its documented algorithms 
and equations and compares its calculations against analytical 
solutions and the method of manufactured solutions. While 
traditional verification performs these checks and comparisons 
for every code release, sequential verification performs 
checking only for the original code release but continually 
compares calculations between consecutive versions on the test 
cases. If unexplained differences are not detected, the new 
release is sequentially verified. During its life-cycle, RELAP5-
3D has employed sequential verification, expanding its test set 
with each new feature and capability. As the test set grew and 
greater fidelity was sought, the ‘diffem’ utility was developed 
that, for every input file in the test set, performed a character-
by-character comparison of the output files of two versions of 
RELAP5-3D. Thus every difference recorded on the printed 
output files was automatically detected. 

This method has deficiencies. Differences in calculations 
between two versions may go undetected because insufficient 
decimal digits are recorded on the output file. Additionally, 
code changes that are intended to modify results can cause 
unintended changes to physical models that are missed in the 
verification process. Analysis shows that some code features 
and capabilities, including restart and backup, were not 
checked by existing test suites. 

To address these deficiencies, state-of-the-art verification 
techniques[2] have been adapted and extended to the RELAP5-
3D code. The method provides sufficient coverage by creating 
a comprehensive verification test suite. A new verification file, 
that compresses key data onto small disk files to improve 
detection, has been developed for RELAP5-3D. The method’s 
null testing compares the verification files of two different 
code versions for the same test case. It extends the original 
scope of verification when applied to a single version to test its 
restart and backup processes. 

The results of implementing and analyzing this method are 
presented. Section 2 explains the detection of differences and 
the new verification file. Section 3 details the coverage of code 
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features. Section 4 defines the Tests/Features Matrix that 
visualizes coverage. Section 5 discusses null testing. Section 6 
explains restart testing and summarizes the resulting code 
improvements. Section 7 discusses backup testing. Section 8 
explains the method’s programming and automation. Section 9 
statistically analyzes this form of testing. 

NOMENCLATURE 
H0 Null Hypothesis 
H1 Alternative Hypothesis 
N Number of test cases 
P Probability function 
S Size of the verification file 
T Temperature 
Tr Trip 
UP User-reported Problem 
uf Liquid internal energy 
ug Gas internal energy 
Vf Velocity of the Liquid (Fluid) 
Vg Velocity of the Gas 
X Random Variable for the Hypothesis Test 

that two runs are identical 
Xa Noncondensable Quality  
Xi Random Variable for Test Case i, the ith input 

deck. 
Y Control Variable 

 significance level of a hypothesis test 
g Void fraction of gas 
 Probability of committing Type II error t 
p Pressure Drop 
t Timestep for Hydrodynamic Advancement 
tkin Timestep for Neutron Kinetics Advancement 
 Sum of RELAP5-3d estimate errors 
 Neutron Flux 
b Density of Boron 

 
DIFFERENCE DETECTION AND VERIFICATION FILE 

Detection of any difference between runs of an identical 
input file by two different versions of RELAP5-3D can be 
guaranteed by writing all data in RELAP5-3D memory on a 
binary file and comparing them. This is impractical and costly: 

A. Since modeling detail and number of writes control the 
size of the output file, it can grow without bound. 

B. Such writes can greatly increase code runtime. 
C. To guarantee detection, every new variable added to the 

code must be added to the write statements. 
Even with powerful compression techniques, a user could 

inadvertently overfill disk space. Two principle ways to reduce 
size are to restrict the frequency of writes and reduce the data 
written. Towards this end, consider that there are three major 
categories of data/variables: 

1. Primary variables from the five physical phenomena: 
heat transfer, thermal hydraulics, neutronics, controls 
and trips. See Table 1. 

2. Secondary variables derived from primary variables and 
used in constructing the set of equations solved for the 
primary variables on the next advancement. 
E.G. heat capacitance, enthalpy, power. 

3. Output-only variables. Do not feed back into primary or 
secondary variables. E.G. water packer count. 

 
Table 1. RELAP5-3D Primary Variables  

Quantity In 
manual 

On file 

Pressure p P 
Liquid internal energy uf Uf 
Gas internal energy ug  Ug 
Void fraction of gas  g  VOIDg 
Noncondensable quality Xa  QUALa 
Density of boron  b Boron 
Liquid velocity Vf  Vf 
Gas velocity Vg  Vg 
Heat Structure Temperature T Temp 
Neutron flux  Flux 
Timesteps sum t, tkin dtsum 
Trips Tr Trips 
Control system value Y Cntrl 

 
If a primary variable is different between two calculations, 

variables in category 2 and 3 that are derived from it will also 
differ. If a secondary variable differs, it will affect the equations 
of (at least) one primary variable and thus its value when the 
equation is solved. Differences in output-only variables do not 
affect category 1 or 2 variables. Writing every category 1 and 3 
variable on the file would guarantee that every difference is 
detected, but issues A and C remain. 

Writing only Category 1 variables eliminates issue C, but 
allows a few differences to escape detection. To overcome issue 
A, the L1-norm of each primary variable is written on the 
verification file. The TH system solution and RHS are included 
to aid debugging, and sums of appropriate output-only 
variables, namely error measures, reduction counts, and backup 
counts, are included to further reduce the possibility of missing 
differences. Sums are calculated in quadruple precision to 
preserve the first 32 decimal places[4] of the L1-norm and are 
written in both scientific notation and z32 hexadecimal so that 
all bits of the sum are represented. 

The information written to the verification file on a given 
advancement is referred to as a verification kernel. Kernels are 
numbered and record the advancement count and cumulative 
time. Input cases are numbered and their titles are recorded. 
Each kernel is smaller than 1.4 KB. Writes to the file are 
terminated when it reaches 1 MB. Activation, frequency and 
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duration of kernel output are controlled by input. In addition to 
its use in the automated verification process, the kernel 
information can facilitate debugging. A sample verification file 
with 1 input case and 2 kernels is shown in Fig. 1. 

The small size allows storage of many such files for future 
comparison; therefore unique internal identification data is 
necessary, including: code version and compile time, date and 
time of run, CPU time, and name of the computer on which the 
case was executed. This ID data should be ignored when 
comparisons are made. 

 
 
Figure 1  Example of a Verification File 

 
 
 
CODE FEATURE COVERAGE 

Rather than traditional coverage, which determines the 
percentage of lines of code exercised by a test suite, each code 
feature used in the modeling of nuclear power plants must be 
tested for sequential verification. Since so many features exist, a 
judgment was made to initially exclude those not used at all in 
the DA and other test suites or rarely used for nuclear power 
models. Therefore, coverage is not 100% of all code features, 
but important capabilities are verified. 

Important categories of code features and models include: 
hydrodynamic components, volume and junction options, heat 
structure types, correlations, boundary conditions, trips, tables, 
control variables, reactor kinetics, fluids and Appendix K. User 
choices affect the way the code operates and are also included: 
certain card-1 options, time advancement schemes, solvers, and 
several others. Among excluded features are: most fluids and 
card-1 options, debug and special output control, and the 
mechanistic GE separator component. 
 
FEATURES TESTS MATRIX 

The verification test suite is comprised of 43 input decks 
that test the selected features. Most of these have multiple cases 
which vary one feature, e.g. heat transfer mode. If a feature is 
tested in one kind of component, it may not be tested in another. 
For example, if CCFL is tested in a pipe, it need not be tested in 
valves. Input decks include problems with analytical or well-
known solutions, such as, control variable functions that have 
exact mathematical valuations. 

The actual Features Tests Matrix[2], with over two hundred 
rows and 46 columns, is broken into 6 sub-tables; one is shown 
in Figure 2. 
 
 
Figure 2. Sub-table 1 of the Features Tests Matrix 

 
 
 

The Features Tests Matrix organizes and displays the 
features tested by individual input decks. With exceptions in 
columns 1–3, the columns correspond to input decks and the 
rows to single features. An “X” means the feature in the 
corresponding row is tested by the input deck named at the top 
of the column. An “X” in column two indicates the feature is 
tested by at least one member of the suite of cases, while an “X” 
in column three indicates that it is restarted.  
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Features that are not tested have blanks in columns 2 and 3 
and are marked in purple text, as shown in Figure 2. With over 
9200 cells in the table, manual construction requires a great 
deal of time and checking, so large portions of the construction 
are automated. To aid matrix construction, RELAP5-3D writes 
helpful information for building the matrix on the printed output 
file when verification is active. Even so, sections manually 
prepared may not mark every input deck that tests a given 
feature. Automation becomes more important as addition of new 
input and code features requires the matrix to be rebuilt. 

The verification tests are summarized in Table 2. Each test 
resides in a directory named in column 1 that contains input and 
auxiliary files. The base input file has the same name as the 
directory, but with a “.i” extension. The verification file will 
have the “.vrf” extension. 

 
Table 2 Verification Tests and Descriptions 
Test ID 
(# Cases)  

Description 

3dflow 
(18) 

Simulates 3-D flow of single-phase liquid, single-phase vapor, or 
two-phase flow in a 3x3x3 Cartesian grid with either 1-D or 3-D 
momentum equations. 

ans 
(9) 

Tests decay heat options with the point kinetics model, fission 
power types, fission product types available with each ANS 
standard, and the G-factor contribution to the decay heat.  

boronm 
(4) 

Tracks a square wave in boron concentration through a constant 
area pipe with and without Godunov method.   

crit 
(4) 

Tests Ransom-Trapp and Henry-Fauske critical flow models for a 
range of stagnation conditions including subcooled, two-phase, 
and superheated in a small horizontal pipe. Also tests cases with no 
choking allowed and homogeneous flow. 

cyl3 
(1) 

Tests the metal water reaction model for steam flowing past the 
right surface of a cylindrical heat structure.  

duklerm 
(5) 

Tests the CCFL model using Dukler-Smith air-water countercurrent 
flow data.  Wallis, Kutateladze, and Bankoff correlations are tested.   

eccmix 
(1) 

Models a portion of the cold leg of a typical PWR during ECC 
injection.    

edhtrkm 
(5) 

Edward’s pipe simulates a rapid blowdown of a pipe. Includes 
extras: reactor kinetics, heat structure cosine temperature 
problems, and all control variables types, but shaft. Cases use 
fluids: h2o, d2o, h2on, h2o95, hen, and an air/water mixture. 

eflag 
(2) 

Simulates blowdown of one vessel into another to check the effect 
of the e-flag on the thermodynamic state in the downstream 
vessel. 

enclss 
(1) 

Steady-state calculation of a graphite stack using the heat 
conduction enclosure model. 

fric 
(14) 

Tests various single-phase wall and junction friction models. Cases 
include turbulent flow with and without heated wall effect, laminar 
flow with and without shape factors, abrupt area change options, 
and user input equations for wall and form friction.  

fwhtr (1) Represents a tube-in-shell feedwater heater.  
gota27 
(1) 

Simulates rod-to-rod radiation in a 64-rod bundle in low-pressure 
steam using radiation enclosure model.   

hse 
(3) 

Simulates two-phase flow through a horizontal tee with offtakes 
coming off the top, bottom, or side face of the horizontal pipe.    

httable 
(3) 

Simple model of a pipe and heat structure exercising structure BC 
related to heat flux and heat transfer coefficient. 

httest 
(9) 

Simple model of a pipe and heat structure that varies IC and BC to 
achieve various heat transfer regimes for heat transfer packages 1, 
111, and 134.  Also tests the non-equilibrium volume option.  

hxco2m Models a once-through heat exchanger with PbBi on the shell side 

(2) and supercritical carbon dioxide inside the tubes. Tests the normal 
and alternate heat structure-fluid coupling models in steady-state. 

jetjun 
(2) 

Simulates insurges and outsurges of liquid into a pressurizer with 
and without the jet junction model.   

jetpmp 
(1) 

Tests jet pump performance over a range of suction and driveline 
flows. 

l31acc 
(1) 

Represents the accumulator response during a slow 
depressurization during LOFT Experiment L3-1. 

l2-5-emA 
(1) 

Tests Appendix K options during a LOFT Experiment L2-5, which 
simulates a loss-of-coolant accident initiated by a large break. 

neptunus 
(2) 

Models pressurizer insurge/outsurge experiment with spray. 

pack 
(4) 

Vertical fill problem tests water packing model when subcooled 
liquid is injected into superheated steam from below. Uses semi- 
and nearly-implicit timesteps.    

pitch (1) Tests an inertial check valve with movement. 
radial 
(1) 

Models pure radial, symmetric flow problem in a 2D hollow 
cylinder.  There is no azimuthal flow. 

rcpr 
(1) 

Tests the performance of a recompressing compressor in a 
supercritical CO2 cycle. 

refbun 
(1) 

Tests two-phase flow and heat transfer with horizontal and vertical 
bundles that exercise the Groeneveld and PG CHF correlations and 
correlations for narrow, rectangular channels. 

regime 
(22) 

Tests the standard horizontal and vertical flow regimes by adjusting 
flow boundary conditions through a simple pipe.   Both the pre-
CHF and post-CHF regimes are tested for the vertical pipe.    

rigidbody 
(1) 

Models pure azimuthal, symmetric flow problem in a 2D hollow 
cylinder.   There is no radial flow. 

rtheta 
(1) 

Models flow in a 2D hollow cylinder with symmetric flow in both 
the radial and azimuthal flow directions.   

rtsampnm 
(1) 

Based on typpwr, tests radio-nuclide transport model and the axial 
heat source options using nodal kinetics. 

rtsamppm 
(1) 

Based on typpwr with uses point kinetics, tests various axial heat 
source options, including those from tables, control variables, and 
reactor kinetics.  Tests the radio-nuclide transport model too  

slab3 
(1) 

Tests the metal water reaction model for steam flowing past the 
right surface of a rectangular heat structure.  

sphere3 
(1) 

Tests the metal water reaction model for steam flowing past the 
right surface of a spherical heat structure.  

state 
(24) 

Tests various fluid states, including subcooled liquid, two-phase, 
superheated vapor, high-pressure liquid, high-temperature vapor, 
and supercritical, for h2o, h2on, d2o, and new helium.   

todcnd 
(1) 

Models heat transfer from hot wall with the reflood and two-
dimensional heat conduction models.   

turbine9 
(1) 

Multi-stage steam turbine with moisture separation.  All four types 
of turbines are tested. 

typ1200 
(1) 

Models small-break LOCA in a typical pressurized water reactor for 
1200 s.  

typ_kindt 
(2) 

TYPPWR input model with nodal kinetics, Krylov solver, and 
independent kinetics timestep. 

valve (5) Models opening and closing of all valves, except relief. 
varvol2 
(1) 

Uses the variable volume model and a general table to vary the 
fluid volume of a single liquid-filled volume. 

2phspum
p   (1) 

Tests two-phase pump head degradation as a function of void 
fraction alone and as a function of void fraction and pressure. 

 
The number of input cases in the base input deck is listed 

after each test name in Table 2. All kernels are recorded in the 
same verification file with the cases marked as shown in Fig. 1. 
The tests run in 1 to 10 seconds on modern computer platforms 
with 3 exceptions that take under one minute each. 
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NULL TESTING 
There are many times in the development of codes such as 

RELAP5-3D that it is desired to show that code modifications 
do not impact results. Examples of this are situations when 
memory structure has been modified, or ensuring that new 
features do not change the results of problems in which they are 
not employed. The combination of the verification data files and 
a comprehensive test suite provide the ability to test this 
condition. To perform null testing, a reference set of solutions is 
first generated. The test suite is then executed with the modified 
code. If all of the verification files are the same, there is now 
evidence that the changes have not inadvertently impacted the 
results. 
 
RESTART TESTING 

The RELAP5-3D restart capability[6] provides a means to 
continue a previous calculation from some point after input 
processing concluded, possibly from the end of the previous run 
or an intermediate point in the calculation. Each restart record 
contains virtually all calculation parameters (E.G. pressures, 
temperatures, void fractions, flow rates, etc.) for the entire 
transient calculation. 

Previously, users have reported that for some input models, 
the code produces different calculations on restart than it does 
when the code runs straight through. Acceptable restart 
performance for an input deck means that a restart run from an 
intermediate record of its restart file produces the same 
verification kernels as the base run did, for all common 
timesteps.  

The purpose of restart testing is to ensure this for the tested 
features. All 43 tests of the verification suite are restarted and 
the restart input files are stored with the base input deck. If the 
base deck is named base.i, then the restart is named base.r.i and 
the verification file is base.r.vrf. If more than one input case 
exists, then the restart files it produces are named base_1.r, 
base_2.r, etc. and base.r.i uses them to run the multiple restart 
cases[6], but all verification kernels are written to base.r.vrf. 

Like with null testing (version-to-version comparison) all 
identification data is ignored when comparing base and restart 
verification files. The test fails for a given input model if 
differences are found. The process ensures that all verification 
kernels occur after the restart time, to prevent false differences 
from being found. 

 
 

Table 3 Issues Found and Fixed via New Verification 
Description Found Fixed 
Restart issues 10   5 
Restart issue w/ final bit of cumulative time (5) (0) 
Backup issues 27 17 
Total Issues 37 22 

 
The new verification capability revealed 10 restart issues. 

Five have been resolved. The remaining five have been tracked 

to a difference in the final bit of cumulative time between the 
restart file and internal memory. Table 3 summarizes this. 

 
 
BACKUP TESTING 

A RELAP5-3D time-step backup occurs when the code 
detects and improper solution has been obtained. For these 
conditions, the solution is reset to the values at the end of the 
last successful advancement and the time-step is repeated, often 
with a modified logic path, with either the same or reduced 
time-step size. 

Backup testing checks that the code can correctly repeat 
any given advancement at the same time-step size. The process 
artificially induces a backup, as directed from code input, by 
setting set one of the code’s three backup condition[7, 8, 9] flags 
on one or more advancements. The process ensures that the 
same time-step size is used on the repeated time-step. The code 
must produce the same calculations on both attempted 
advancements. Since this capability is used in all applications, it 
is important to ensure that the code results are not impacted 
through imperfect backup logic. 

To examine the backup capability, two runs are made. One 
uses the original deck of a given input model and the second 
uses a copy of that deck with forced backup. However, not all 
advancements stress the code equally. Which one is the best for 
revealing backup errors? 

Since code updates can cause some phenomena to occur at 
different times, or to take a different number of advancements 
to reach the same point in time, constant resetting of the backup 
time would be required for some input models as the code is 
developed. A better solution is to force a backup on every 
successful advancement (except the first because it lacks certain 
old-time values that must be restored on a backup) to create a 
thorough and non-changing backup test. This can be invoked 
via input with the keyword “backall”. 

Backall produces a verification kernel only on the final 
advancement, otherwise the verification file would reach the 
1MB limit for many tests. 

Two copies of the base input deck, base.i, are made for 
backup testing. The first, base.b.i, performs the base run but 
writes a kernel only for the final advancement. The second, 
base.bk.i, runs with the backall option. Building these decks 
from base.i every time backup testing is performed ensures that 
the base and backup decks match perfectly, even if the base 
deck is modified. Before comparing the verification files, 
base.b.vrf and base.bk.vrf, the line with repeat counts is 
removed because the forced backups change them artificially. 

The backup testing has indentified that 27 of the 
verification problems did not pass the rigorous backup testing, 
see Table 3.  Of these, 17 have been resolved. Work is ongoing 
to resolve the final 10. 

 
PROGRAMMING AND AUTOMATION 

The verification coding is largely separated from the rest of 
the source code in RELAP5-3D. Most of the verification 
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subprograms, along with their new data and documentation, are 
stored in a new module. This isolates the new coding; thus it 
reduces the chance of introducing errors when adding new code. 
Very few statements need to be inserted into the existing 
RELAP5-3D code to access this data and these routines. This 
approach makes it is easier to port the verification coding to 
older versions of RELAP5-3D and would aid in its adaptation 
to other Fortran programs. 

However, not all the new coding is in the module. In some 
existing subroutines, such as the 199-card processor, internal 
subprograms that provide verification-specific capability were 
written. Also, two new standalone subroutines were written. 
These routines access data of several different modules so that 
including them in the new verification module would subvert 
the goal if isolating new code. 

The method is invoked through a system of Makefiles on 
either a Linux platform or a properly equipped Windows PC. 
The user must first identify the locations of the RELAP5-3D 
distribution, the verification test suite, and directory for the 
output verification files in an auxiliary file. The user then issues 
a command that invokes the Makefile with one of four major 
options: null test, restart test, backup test, or all tests. 

The Makefile runs all requested tests, put the verification 
files in the target directory, and compares them to previous 
verification files if they exist. If everything compares exactly, 
the Makefile reports the single word: verified. If there are 
differences, it reports that and lists the test problems that did not 
compare. If all tests are run, it categorizes the failures in the 
report. This system was used in creating Table 3. 

The automated system employs two Makefiles. They 
perform the tasks explained above and provide other functions. 
For example, the system builds the backup input files, links 
fluid property files and RELAP5-3D executable program to 
each test directory, renames existing verification files at the 
target location as backup files with the ‘bak’ extension before 
comparison, and performs a variety of cleaning operations. 

STATISTICAL ANAYLSIS 
The verification testing developed above is a form of 

hypothesis testing and can be analyzed statistically. The null 
hypothesis of the test, H0, is: “The two runs produce exactly the 
same calculations.” The alternate hypothesis is that “the 
calculations are different.” The statistic used to test the 
hypothesis for the ith test case, Xi, has a value of 0 if no 
differences are found between the two runs. It is 1 otherwise, no 
matter how many differences occur. When there are N test 
cases, then Xi is defined for each test case, i, and X is the 
maximum. Applying standard statistical methods[10], this can be 
expressed mathematically as: 

Xi =  (1.1.1) 

X = max {Xi | i = 1, 2, …, N} (1.1.2) 

H0: The two runs have identical calculations 

Test V: Accept H0 if X = 0, but reject it if X = 1. 
Hypothesis testing potentially commits two kinds of errors. 

Type I Error or false positive, is the rejection of H0 when it is 
true, in other words, finding a difference when there are none. 
The probability of Type I Error is denoted  and is called the 
level of significance of the test. Type II Error or a false 
negative, is accepting H0 when it is false. That means there are 
differences that go undiscovered. It has probability . 

 = P(Reject H0 | H0 is true) = P(Type I error) 

 = P(Accept H0 | H0 is false) = P(Type II error) 

This is summarized in Table 4. 

Table 4 Hypothesis Testing Table 

 H0 is true 
No differences exist 

A0 is true 
Differences exist 

Accept H0 Correct 
Report: “Verified” 

Type II Error 
Fail to find actual 
differences  

Reject H0 Type I Error 
Falsely find differences 

Correct 
Report: “Differences 
have been found” 

 
Analysis shows that Test V has good properties. 
 

Theorem: Test V always accepts the null hypothesis when it is 
true. 
Proof: Suppose H0 is true. There are no differences to detect, so 
for each test in the suite, Xi = 0. Therefore, 
X = max {Xi} = 0 always (when H0 is true). Thus, 
P(Accept H0 | H0 is true) = P(X = 0 | H0 is true) = 1. 
 
This only applies if the test is properly programmed. 
 
Corollary: The test never commits Type I Error. It has 
significance level,  = 0. 
 
Note that these two results apply to all three kinds of testing 
presented here: null, restart, and backup. 
 
Regarding Type II error,  is less than 10-32 for primary and 
secondary variables for any single test problem, but Test V may 
miss errors in output-only quantities. Used in conjunction with 
the diffem utility described in the introduction, the combined 
method detects all differences to the accuracy of the printed 
output file, so  is approximately 10-5. Since the power of a 
statistical test is 1- , the combined method is a very powerful 
test of a single input problem. 
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SUMMARY 
A highly accurate, automated testing system has been 

implemented for RELAP5-3D verification. It employs a set of 
input problems, called the verification test suite, that cover the 
important code features for nuclear power plant modeling. It 
writes a small, extremely accurate verification file of L1 norms 
of primary variables to detect differences in the first 32 
significant digits. It can be used for null testing and extends the 
original scope of verification to restart and backup testing. The 
method is very powerful and can be applied to many other 
computer programs. 
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